小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié)

時間:2025-01-10 11:39:54 志華 總結(jié) 我要投稿
  • 相關(guān)推薦

小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié)(精選10篇)

  總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,讓我們一起來學(xué)習(xí)寫總結(jié)吧?偨Y(jié)你想好怎么寫了嗎?下面是小編收集整理的小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié),僅供參考,希望能夠幫助到大家。

小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié)(精選10篇)

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 1

  分數(shù)乘法知識點

  (一)分數(shù)乘法意義:

  1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。

  “分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。

  2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。

  “一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)

  (二)分數(shù)乘法計算法則:

  1、分數(shù)乘整數(shù)的運算法則是:分子與整數(shù)相乘,分母不變。

  (1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結(jié)果必須是最簡分數(shù))。

  2、分數(shù)乘分數(shù)的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)

  (1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。

  (2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。

  (3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結(jié)果才是最簡單分數(shù))。

  (4)分數(shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。

  (三)積與因數(shù)的關(guān)系:

  一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當(dāng)b >1時,c>a。

  一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當(dāng)b<1時,c

  一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當(dāng)b =1時,c=a 。

  在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。

  (四)分數(shù)乘法混合運算

  1、分數(shù)乘法混合運算順序與整數(shù)相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。

  2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。

  乘法交換律:a×b=b×a乘法結(jié)合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

  1、倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,不能單獨存在。單獨一個數(shù)不能稱為倒數(shù)。(必須說清誰是誰的倒數(shù))

  2、判斷兩個數(shù)是否互為倒數(shù)的標準是:兩數(shù)相乘的積是否為“1”。例如:a×b=1則a、b互為倒數(shù)。

  3、求倒數(shù)的方法:

  ①求分數(shù)的倒數(shù):交換分子、分母的位置。

 、谇笳麛(shù)的倒數(shù):整數(shù)分之1。

 、矍髱Х謹(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。

  ④求小數(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。

  4、1的倒數(shù)是它本身,因為1×1=1

  0沒有倒數(shù),因為任何數(shù)乘0積都是0,且0不能作分母。

  5、真分數(shù)的倒數(shù)是假分數(shù),真分數(shù)的倒數(shù)大于1,也大于它本身。

  假分數(shù)的倒數(shù)小于或等于1。帶分數(shù)的倒數(shù)小于1。

  (六)分數(shù)乘法應(yīng)用題——用分數(shù)乘法解決問題

  1、求一個數(shù)的幾分之幾是多少?(用乘法)

  已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。

  2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應(yīng)的量,或者“占”“是”“比”字后面的量是單位“1”。

  3、什么是速度?

  速度是單位時間內(nèi)行駛的路程。

  速度=路程÷時間時間=路程÷速度路程=速度×?xí)r間

  單位時間指的是1小時1分鐘1秒等這樣的大小為1的時間單位,每分鐘、每小時、每秒鐘等。

  4、求甲比乙多(少)幾分之幾?

  多:(甲-乙)÷乙少:(乙-甲)÷乙

  數(shù)與代數(shù)知識點

  一、分數(shù)乘法

  (一)分數(shù)乘法的計算法則:

  1、分數(shù)與整數(shù)相乘:分子與整數(shù)相乘的積做分子,分母不變。(整數(shù)和分母約分)

  2、分數(shù)與分數(shù)相乘:用分子相乘的積做分子,分母相乘的積做分母。

  3、為了計算簡便,能約分的要先約分,再計算。

  注意:當(dāng)帶分數(shù)進行乘法計算時,要先把帶分數(shù)化成假分數(shù)再進行計算。

  (二)規(guī)律:(乘法中比較大小時)

  一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。

  一個數(shù)(0除外)乘小于1的數(shù)(0除外),積小于這個數(shù)。

  一個數(shù)(0除外)乘1,積等于這個數(shù)。

  (三)分數(shù)混合運算的運算順序和整數(shù)的運算順序相同。

  (四)整數(shù)乘法的交換律、結(jié)合律和分配律,對于分數(shù)乘法也同樣適用。

  乘法交換律:a×b=b×a

  乘法結(jié)合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c

  二、分數(shù)乘法的解決問題(詳細見重難點分解)

  (已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)

  1、找單位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

  2、求一個數(shù)的幾倍:一個數(shù)×幾倍;求一個數(shù)的幾分之幾是多少:一個數(shù)× 。

  3、寫數(shù)量關(guān)系式技巧:

  (1)“的”相當(dāng)于“×”(乘號)

  “占”、“是”、“比”“相當(dāng)于”相當(dāng)于“=”(等號)

  (2)分率前是“的”:

  單位“1”的量×分率=分率對應(yīng)量

  (3)分率前是“多或少”的意思:

  單位“1”的量×(1±分率)=分率的對應(yīng)量

  二、分數(shù)除法

  (一)倒數(shù)

  1、倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。

  強調(diào):互為倒數(shù),即倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,倒數(shù)不能單獨存在。(要說清誰是誰的倒數(shù))。

  2、求倒數(shù)的方法:(原數(shù)與倒數(shù)之間不要寫等號哦)

  (1)求分數(shù)的倒數(shù):交換分子分母的位置。

  (2)求整數(shù)的倒數(shù):把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。

  (3)求帶分數(shù)的倒數(shù):把帶分數(shù)化為假分數(shù),再求倒數(shù)。

  (4)求小數(shù)的倒數(shù):把小數(shù)化為分數(shù),再求倒數(shù)。

  3、因為1×1=1,1的`倒數(shù)是1;

  因為找不到與0相乘得1的數(shù)0沒有倒數(shù)。

  4、對于任意數(shù)a(a≠0),它的倒數(shù)為1/a;非零整數(shù)a的倒數(shù)為1/a;分數(shù)b/a的倒數(shù)是a/b;

  5、真分數(shù)的倒數(shù)大于1;假分數(shù)的倒數(shù)小于或等于1;帶分數(shù)的倒數(shù)小于1。

  (二)分數(shù)除法

  1、分數(shù)除法的意義:

  分數(shù)除法與整數(shù)除法的意義相同,表示已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算。

  2、分數(shù)除法的計算法則:除以一個不為0的數(shù),等于乘這個數(shù)的倒數(shù)。

  3、規(guī)律(分數(shù)除法比較大小時):

  (1)當(dāng)除數(shù)大于1,商小于被除數(shù);

  (2)當(dāng)除數(shù)小于1(不等于0),商大于被除數(shù);

  (3)、當(dāng)除數(shù)等于1,商等于被除數(shù)。

  4、“[ ] ”叫做中括號。一個算式里,如果既有小括號,又有中括號,要先算小括號里面的,再算中括號里面的。

  (三)分數(shù)除法解決問題(詳細見重難點分解)

  (未知單位“1”的量(用除法):已知單位“1”的幾分之幾是多少,求單位“1”的量。 )

  1、數(shù)量關(guān)系式和分數(shù)乘法解決問題中的關(guān)系式相同:

  (1)分率前是“的”:

  單位“1”的量×分率=分率對應(yīng)量

  (2)分率前是“多或少”的意思:

  單位“1”的量×(1分率)=分率對應(yīng)量

  2、解法:(建議:用方程解答)

  (1)方程:根據(jù)數(shù)量關(guān)系式設(shè)未知量為x,用方程解答。

  (2)算術(shù)(用除法):分率對應(yīng)量÷對應(yīng)分率=單位“1”的量

  3、求一個數(shù)是另一個數(shù)的幾分之幾:就用一個數(shù)÷另一個數(shù)

  4、求一個數(shù)比另一個數(shù)多(少)幾分之幾:

 、偾蠖鄮追种畮祝捍髷(shù)÷小數(shù)– 1

 、谇笊賻追种畮祝1 -小數(shù)÷大數(shù)

  或①求多幾分之幾(大數(shù)-小數(shù))÷小數(shù)

  ②求少幾分之幾:(大數(shù)-小數(shù))÷大數(shù)

  (四)比和比的應(yīng)用

  1、比的意義:兩個數(shù)相除又叫做兩個數(shù)的比。

  2、在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值(比值通常用分數(shù)表示,也可以用小數(shù)或整數(shù)表示)。

  例如

  15:10 = 15÷10=1.5

  ∶ ∶ ∶ ∶

  前項比號后項比值

  3、比可以表示兩個相同量的關(guān)系,即倍數(shù)關(guān)系。也可以表示兩個不同量的比,得到一個新量。

  例:路程÷速度=時間。

  4、區(qū)分比和比值

  比:表示兩個數(shù)的關(guān)系,可以寫成比的形式,也可以用分數(shù)表示。

  比值:相當(dāng)于商,是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。

  5、根據(jù)分數(shù)與除法的關(guān)系,兩個數(shù)的比也可以寫成分數(shù)形式。

  6、比和除法、分數(shù)的聯(lián)系:

  7、比和除法、分數(shù)的區(qū)別:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關(guān)系。

  8、根據(jù)比與除法、分數(shù)的關(guān)系,可以理解比的后項不能為0。

  體育比賽中出現(xiàn)兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關(guān)系。

  (五)比的基本性質(zhì)

  1、根據(jù)比、除法、分數(shù)的關(guān)系:

  商不變的性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

  分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)時(0除外),分數(shù)值不變。

  比的基本性質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。

  2、最簡整數(shù)比:比的前項和后項都是整數(shù),并且是互質(zhì)數(shù),這樣的比就是最簡整數(shù)比。

  3、根據(jù)比的基本性質(zhì),可以把比化成最簡單的整數(shù)比。

  4.化簡比:

  (1)用比的基本性質(zhì)化簡

 、儆帽鹊那绊椇秃箜椡瑫r除以它們的公因數(shù)。

 、趦蓚分數(shù)的比:用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。

 、蹆蓚小數(shù)的比:向右移動小數(shù)點的位置,先化成整數(shù)比再化簡。

  (2)用求比值的方法。注意:最后結(jié)果要寫成比的形式。

  5.按比例分配:把一個數(shù)量按照一定的比來進行分配。這種方法通常叫做按比例分配。

  如:已知兩個量之比為,則設(shè)這兩個量分別為。

  6、路程一定,速度比和時間比成反比。(如:路程相同,速度比是4:5,時間比則為5:4)

  工作總量一定,工作效率和工作時間成反比。

  (如:工作總量相同,工作時間比是3:2,工作效率比則是2:3)

  三、百分數(shù)

  (一)百分數(shù)的意義和寫法

  1、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。

  百分數(shù)是指的兩個數(shù)的比,因此也叫百分率或百分比。

  2、百分數(shù)和分數(shù)的主要聯(lián)系與區(qū)別:

  (1)聯(lián)系:都可以表示兩個量的倍比關(guān)系。

  (2)區(qū)別:

  ①意義不同:百分數(shù)只表示兩個數(shù)的倍比關(guān)系,不能表示具體的數(shù)量,所以不能帶單位;

  分數(shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關(guān)系,表示具本數(shù)時可以帶單位。

 、凇俜謹(shù)的分子可以是整數(shù),也可以是小數(shù);

  分數(shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。

  3、百分數(shù)的寫法:通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。

  (二)百分數(shù)與小數(shù)的互化:

  1、小數(shù)化成百分數(shù):把小數(shù)點向右移動兩位,同時在后面添上百分號。

  2.百分數(shù)化成小數(shù):把小數(shù)點向左移動兩位,同時去掉百分號。

  (三)百分數(shù)的和分數(shù)的互化

  1、百分數(shù)化成分數(shù):

  先把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分母是否100的分數(shù),能約分要約成最簡分數(shù)。

  2、分數(shù)化成百分數(shù):

 、儆梅謹(shù)的基本性質(zhì),把分數(shù)分母擴大或縮小成分母是100的分數(shù),再寫成百分數(shù)形式。

 、谙劝逊謹(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。

  (四)常見的分數(shù)與小數(shù)、百分數(shù)之間的互化

  圓的面積知識

  1、圓的面積:圓所占平面的大小叫做圓的面積。用字母S表示。

  2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

  3、圓面積公式的推導(dǎo):

  (1)、用逐漸逼近的轉(zhuǎn)化思想:體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復(fù)雜為簡單,化抽象為具體。

  (2)、把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。

  (3)、拼出的圖形與圓的周長和半徑的關(guān)系。

  4、環(huán)形的面積:

  一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度.)

  S環(huán)= πR2-πr2或

  環(huán)形的面積公式:S環(huán)=π(R2-r2)。

  5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。

  而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。

  例如:

  在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。

  6、兩個圓:半徑比=直徑比=周長比;而面積比等于這比的平方。

  例如:

  兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

  7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π

  8、當(dāng)長方形,正方形,圓的周長相等時,圓面積,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。

  9、確定起跑線:

  (1)、每條跑道的長度=兩個半圓形跑道合成的圓的周長+兩個直道的長度。

  (2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)

  (3)、每相鄰兩個跑道相隔的距離是:2×π×跑道的寬度

  (4)、當(dāng)一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當(dāng)一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

  10、常用各π值結(jié)果:

  2π = 6.28 3π = 9.42

  4π = 12.56 5π = 15.7

  6π = 18.84 7π = 21.98

  8π = 25.12 9π = 28.26

  10π = 31.4 16π = 50.24

  25π = 78.5 36π = 113.04

  64π = 200.96 96π = 301.44

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 2

  1. 位置的表示方法: A(列,行)如:A(3,4)表示A點在第三列第四行。

  一般先看橫的數(shù)字,再看豎的數(shù)字,注意中間是逗號

  2.分數(shù)乘法的意義:一個數(shù)×分數(shù)

  分數(shù)×一個數(shù)

  3.乘積是1的兩個數(shù)互為倒數(shù) 1的倒數(shù)是1 0沒有倒數(shù)

  4.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)

  5.兩個數(shù)相除又叫做兩個數(shù)的比。比值通常用分數(shù)表示,也可以用分數(shù)或整數(shù)

  6.比的基本性質(zhì):比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變

  7.圓的周長與它的直徑的比值叫做圓周率,用兀來表示,!3.14

  8.有關(guān)圓的公式:

  C= 兀d = 2兀r S =兀r 2

  d=C÷兀 d=2 r r = d÷2 r = C÷!2

  圓環(huán)的面積S = 兀 R 2-兀 r 2

  9.原價×折扣=現(xiàn)價 營業(yè)額×稅率=應(yīng)納稅額 本金×利率×?xí)r間=利息

  10.條形統(tǒng)計圖:可以清楚的看出數(shù)據(jù)的多少

  折線統(tǒng)計圖:可以清楚的看出數(shù)據(jù)的增減變化趨勢

  扇形統(tǒng)計圖:可以清楚的看出各部分同總數(shù)之間的關(guān)系

  六年級數(shù)學(xué)下冊知識點

  一、比例

  1、比例的基本性質(zhì)是在比例里兩內(nèi)項積等于兩外項積。

  2、用x 和 y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),那么正比例關(guān)系表示為:

  Y : x = k(一定)

  3、用x 和 y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),那么反比例關(guān)系表示為:

  Xy=k(一定)

  二、數(shù)與代數(shù)(復(fù)習(xí))

  1、自然數(shù)和0都是整數(shù)。

  2、自然數(shù):我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。0也是自然數(shù)。

  3、計數(shù)單位:一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。

  每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。

  4、數(shù)位:計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。

  5、數(shù)的整除:整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。

  6:倍數(shù)和因數(shù):如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的因數(shù)。倍數(shù)和因數(shù)是相互依存的。 因為35能被7整除,所以35是7的倍數(shù),7是35的因數(shù)。

  7、一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,的因數(shù)是它本身。例如:10的因數(shù)有1、2、5、10,其中最小的因數(shù)是1,的因數(shù)是10。

  8、一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3的倍數(shù)有:3、6、9、…其中最小的倍數(shù)是3 ,沒有的倍數(shù)。

  9、能被2整除的數(shù)叫做偶數(shù)。 不能被2整除的數(shù)叫做奇數(shù)。 0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。

  10、一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  11、一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。

  12、1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其因數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。

  13、每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3×5,3和5 叫做15的質(zhì)因數(shù)。

  14、幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中的一個,叫做這幾個數(shù)的公因數(shù),例如12的因數(shù)有1、2、3、4、6、12;18的因數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數(shù),6是它們的公因數(shù)。

  15、公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:

  16、如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的公因數(shù)。

  17、如果兩個數(shù)是互質(zhì)數(shù),它們的公因數(shù)就是1。

  18、幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、14、16、18 ……

  3的倍數(shù)有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數(shù),6是它們的最小公倍數(shù)。

  19、如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。

  20、幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的'。

  (二)小數(shù)

  1、小數(shù)的意義 :把整數(shù)1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數(shù)表示。

  一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……

  2、一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)是整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。

  3、在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。

  (三)分數(shù)

  1、分數(shù)的意義 :把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。

  2、把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。

  3、分數(shù)的分類

  真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。

  4、約分:把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。

  5、分子分母是互質(zhì)數(shù)的分數(shù)叫做最簡分數(shù)。

  6、把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。

  (四) 約分和通分

  1、約分的方法:用分子和分母的公因數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。

  2、通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。

  三 性質(zhì)和規(guī)律

  1、商不變的規(guī)律 :商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。

  2、小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。

  3、小數(shù)點位置的移動引起小數(shù)大小的變化

  (1)小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍……

  (2)小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍……

  (3)小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。

  (五)分數(shù)的基本性質(zhì)

  分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。

  (六)分數(shù)與除法的關(guān)系

  1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)

  2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。

  3. 被除數(shù) 相當(dāng)于分子,除數(shù)相當(dāng)于分母。

  四 運算的意義

  (一)整數(shù)四則運算

  加數(shù)+加數(shù)=和

  一個加數(shù)=和-另一個加數(shù)

  被減數(shù)-減數(shù)=差

  被減數(shù)=減數(shù)+差

  減數(shù)=被減數(shù)-差

  一個因數(shù)× 一個因數(shù) =積

  一個因數(shù)=積÷另一個因數(shù)

  被除數(shù)÷除數(shù)=商

  除數(shù)=被除數(shù)÷商

  被除數(shù)=商×除數(shù)

  (二)運算定律

  1. 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a 。

  2. 加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即(a+b)+c=a+(b+c) 。

  3. 乘法交換律:

  兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b×a。

  4. 乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

  5. 乘法分配律:

  兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

  6. 減法的性質(zhì):

  從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c) 。

  (三)運算法則

  1. 整數(shù)加法計算法則:

  相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。

  2. 整數(shù)減法計算法則:

  相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。

  3. 整數(shù)乘法計算法則:

  先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。

  4. 整數(shù)除法計算法則:

  先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。

  5. 小數(shù)乘法法則:

  先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。

  6. 除數(shù)是整數(shù)的小數(shù)除法計算法則:

  先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。

  7. 除數(shù)是小數(shù)的除法計算法則:

  先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。

  8. 同分母分數(shù)加減法計算方法:

  同分母分數(shù)相加減,只把分子相加減,分母不變。

  9. 異分母分數(shù)加減法計算方法:

  先通分,然后按照同分母分數(shù)加減法的的法則進行計算。

  10. 帶分數(shù)加減法的計算方法: 整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。

  整

  (一)小數(shù)乘除法的意義及法則

  1. 小數(shù)乘法意義:

  小數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。例:3.5×4表示4個3.5相加是多少;虮硎3.5的4倍是多少。

  一個數(shù)乘小數(shù)的意義與整數(shù)乘法的意義不同,是求這個數(shù)的十分之幾,百分之幾,千分之幾……。例:25×0.17,表示25的百分之十七是多少。

  2. 小數(shù)除法的意義

  小數(shù)除法的意義與整數(shù)除法的意義相同,是已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運算。例: 表示已知兩個因數(shù)的積是0.75和其中一個因數(shù)0.5,求另一個因數(shù)是多少;虮硎0.75是0.5的多少倍。

  (二)小數(shù)乘除法的計算法則

  1. 小數(shù)乘法法則:

  (1)先按照整數(shù)乘法的法則計算;

  (2)看因數(shù)中一共有幾位小數(shù),就從積的右邊數(shù)出幾位,點上小數(shù)點。

  2. 小數(shù)除法法則:

  (1)先按照整數(shù)除法的法則去除;

  (2)商的小數(shù)點和被除數(shù)的小數(shù)點對齊;

  (3)除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。

  二、 度量衡

  長度單位換算

  1千米=1000米 1米=10分米

  1分米=10厘米 1米=100厘米

  1厘米=10毫米

  面積單位換算

  1平方千米=100公頃

  1公頃=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  體(容)積單位換算

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升

  1立方厘米=1毫升

  1立方米=1000升

  重量單位換算

  1噸=1000 千克

  1千克=1000克

  1千克=1公斤

  人民幣單位換算

  1元=10角

  1角=10分

  1元=100分

  時間單位換算

  1世紀=100年 1年=12月

  大月(31天)有:135781012月

  小月(30天)的有:46911月

  平年2月28天, 閏年2月29天

  平年全年365天, 閏年全年366天

  1日=24小時 1時=60分

  1分=60秒 1時=3600秒

  代數(shù)初步知識

  一、用字母表示數(shù)

  1 用字母表示數(shù)的意義和作用

  2用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式

  (1)常見的數(shù)量關(guān)系

  路程用s表示,速度v用表示,時間用t表示,三者之間的關(guān)系:

  s=vt v=s/t t=s/v

  總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關(guān)系:

  a=bc b=a/c c=a/b

  (2)運算定律和性質(zhì)

  加法交換律:a+b=b+a

  加法結(jié)合律:(a+b)+c=a+(b+c)

  乘法交換律:ab=ba

  乘法結(jié)合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  減法的性質(zhì):a-(b+c) =a-b-c

  (3)用字母表示幾何形體的公式

  長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。 c=2(a+b) s=ab

  正方形的邊長a用表示,周長用c表示,面積用s表示。 c=4a s=a2

  平行四邊形的底a用表示,高用h表示,面積用s表示。 s=ah

  三角形的底用a表示,高用h表示,面積用s表示。

  s=ah/2

  梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2

  小學(xué)數(shù)學(xué)圖形計算公式

  1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

  2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a

  3 、長方形

  C周長 S面積 a邊長

  周長=(長+寬)×2

  C=2(a+b)

  面積=長×寬

  S=ab

  4 、長方體

  V:體積 s:面積 a:長 b: 寬 h:高

  (1)表面積(長×寬+長×高+寬×高)×2

  S=2(ab+ah+bh)

  (2)體積=長×寬×高

  V=abh

  5 三角形

  s面積 a底 h高

  面積=底×高÷2

  s=ah÷2

  三角形高=面積 ×2÷底

  三角形底=面積 ×2÷高

  6 平行四邊形

  s面積 a底 h高

  面積=底×高

  s=ah

  7 梯形

  s面積 a上底 b下底 h高

  面積=(上底+下底)×高÷2

  s=(a+b)× h÷2

  8 圓形

  S面積 C周長 ∏ d=直徑 r=半徑

  (1)周長=直徑×∏=2×∏×半徑

  C=∏d=2∏r

  (2)面積=半徑×半徑×∏

  9 圓柱體

  v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

  (1)側(cè)面積=底面周長×高

  (2)表面積=側(cè)面積+底面積×2

  (3)體積=底面積×高

  (4)體積=側(cè)面積÷2×半徑

  10 圓錐體

  v:體積 h:高 s;底面積 r:底面半徑

  體積=底面積×高÷3

  11、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

  12、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

  13、圓的面積=圓周率×半徑×半徑

  (二)分數(shù)和百分數(shù)的應(yīng)用

  1、分數(shù)加減法應(yīng)用題:分數(shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。

  2、分數(shù)乘法應(yīng)用題:是指已知一個數(shù),求它的幾分之幾是多少的應(yīng)用題。

  特征:已知單位“1”的量和分率,求與分率所對應(yīng)的實際數(shù)量。

  解題關(guān)鍵:準確判斷單位“1”的量。找準要求問題所對應(yīng)的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。

  3、分數(shù)除法應(yīng)用題:

  (1)求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。

  特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾!耙粋數(shù)”是比較量,“另一個數(shù)”是標準量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。

  解題關(guān)鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數(shù)。

  甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。

  甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關(guān)系式:(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。

  (2)已知一個數(shù)的幾分之幾(或百分之幾 )是多少 ,求這個數(shù)。

  特征:已知一個實際數(shù)量和它相對應(yīng)的分率,求單位“1”的量。

  解題關(guān)鍵:根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應(yīng)的已知實際數(shù)量。

  4、百分率:

  發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)×100%

  小麥的出粉率= 面粉的重量/小麥的重量×100%

  產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100%

  職工的出勤率=實際出勤人數(shù)/應(yīng)出勤人數(shù)×100%

  5、工程問題:是分數(shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應(yīng)用題。

  解題關(guān)鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運用公式。

  數(shù)量關(guān)系:工作總量=工作效率×工作時間

  工作效率=工作總量÷工作時間

  工作時間=工作總量÷工作效率

  工作總量÷工作效率和=合作時間

  數(shù)學(xué)六年級學(xué)習(xí)方法

  首先:課前復(fù)習(xí)。就是上課前花兩三分鐘把書本本節(jié)課要學(xué)的內(nèi)容看一遍。僅僅是看一遍,過一遍。這樣上課老師講自己不但可以跟上老師節(jié)奏還可以再次鞏固。其余不要干其他多余的事。

  其次:上課時候一定要專心聽講,如果覺得老師這里講得都懂了的話可以自己翻書看后面的內(nèi)容。做習(xí)題的時候一定要一道一道往過做,不要越題做。因為對于課本來說這些都是基礎(chǔ),只有基礎(chǔ)完全掌握后才能做難題。上課過程中第一次接觸到的知識點概念等,一定一定要當(dāng)堂背過。不然以后很難背過,不要妄想考前抱佛教再背

  另外要把筆記記準確,知道自己需要記什么不需要記什么,憋一個勁地往書上搬。字不要求整齊,自己能看懂就行。課本資料書上有例題,多看多記方法。先看課本基礎(chǔ),在看資料書上著重的。例題的方法一定一定要理解,不要去背!接著下課再看筆記,只是略微鞏固記住。

  數(shù)學(xué)六年級學(xué)習(xí)技巧

  養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯誤的。學(xué)生們不得不預(yù)習(xí)課本。我準備的數(shù)學(xué)教科書不是簡單的閱讀,而是一個例子,至少十分鐘的思考。在使用前不能通過學(xué)習(xí)知識解決問題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時,在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內(nèi)容的查詢。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 3

  1、一單元分數(shù)乘法分數(shù)乘整數(shù)的意義:就是求幾個相同加數(shù)和的簡便運算。

  2、計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)的積做分子,分母不變。

  3、一個數(shù)乘分數(shù)的意義:可以看做是求這個數(shù)的幾分之幾。

  4、計算法則:一個數(shù)乘分數(shù),用分子×的積做分子,分母相乘的做分母,為了計算的簡便可以先約分。

  5、整數(shù)乘法的交換律,結(jié)合律,分配率,對分數(shù)同樣適用。

  6、乘積是一的兩個數(shù)互為倒數(shù)。

  7、 2單元位置與方向用坐標確定位置:前面的數(shù)表示列,后面的表示行上北下南左西右東3單元分數(shù)除法分數(shù)除法的意義:分數(shù)與整數(shù)的意義相同。

  8、單位1:1.甲是乙的幾分之幾?甲÷乙2.甲比乙多幾分之幾? (甲-乙)÷乙3.甲比乙少幾分之幾? (乙-甲)÷乙路程=速度×?xí)r間速度=路程÷時間時間=路程÷速度工作總量=效率×?xí)r間工作效率=總量÷時間工作時間=總量÷效率4單元比比的意義:兩數(shù)相除就叫做兩個數(shù)的比比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商。

  9、前項相當(dāng)于分子,后項相當(dāng)于分母,比值相當(dāng)于分數(shù)的值。

  10、 5單元圓圓是一種平面曲線圖形。

  11、圓中心的點叫圓心,連接圓心和圓上的任意一點叫半徑,通過圓心并且兩端都在圓上的線段叫直徑直徑=半徑×2圓的周長公式:面積公式:C=πd或C=2πr S=πr的平方6單元百分數(shù)便是一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫百分數(shù)。

  12、百分數(shù)也叫百分率和百分比。

  13、百分數(shù)表示的是數(shù)量,不能帶單位;百分數(shù)是分母是100的分數(shù),分母是100的`不一定是百分數(shù)。

  14、把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,保留三位小數(shù)),再把小數(shù)化成百分數(shù);把百分數(shù)化成分數(shù),先把百分數(shù)改成分母是100的,能約分的要約成最簡分數(shù)。

  15、 7單元扇形統(tǒng)計圖統(tǒng)計圖有:扇形統(tǒng)計圖,條形統(tǒng)計圖和折線統(tǒng)計圖。

  16、扇形統(tǒng)計圖的特點:能夠更清楚地了解個部分和總數(shù)的關(guān)系。

  17、折線統(tǒng)計圖的特點:不但可以表示出數(shù)量的多少,而且還能更清楚地表示數(shù)量的變化趨勢。

  18、條形統(tǒng)計圖的特點:能夠清楚的看出數(shù)量的多少。

  19、 8單元數(shù)學(xué)廣角用列方程或假設(shè)法。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 4

  1、分數(shù)乘法:分數(shù)的分子與分子相乘,分母與分母相乘,能約分的要先約分。

  2、分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

  3、分數(shù)乘法意義:分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。

  4、分數(shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸

  5、倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。

  6、分數(shù)的倒數(shù):找一個分數(shù)的倒數(shù),例如3/4,把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/3,3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。

  7、整數(shù)的倒數(shù):找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。

  8、小數(shù)的倒數(shù):

  普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1

  9、用1計算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的.倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。

  10、分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。

  11、分數(shù)除法計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。

  12、分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。

  13、分數(shù)除法應(yīng)用題:先找單位1。單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。

  14、比和比例:比和比例一直是學(xué)數(shù)學(xué)容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。

  所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個。

  15、比的基本性質(zhì):比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。比的性質(zhì)用于化簡比。

  比表示兩個數(shù)相除;只有兩個項:比的前項和后項。

  比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 5

  一、負數(shù):

  1、在熟悉的生活情境中初步認識負數(shù),能正確的讀、寫正數(shù)和負數(shù),知道0既不是正數(shù)也不是負數(shù)。

  2、初步學(xué)會用負數(shù)表示一些日常生活中的實際問題,體驗數(shù)學(xué)與生活的密切聯(lián)系。

  3、能借助數(shù)軸初步學(xué)會比較正數(shù)、0和負數(shù)之間的大小。

  二、圓柱和圓錐

  1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側(cè)面和高。認識圓錐的底面和高。

  2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。

  3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的`空間觀念。

  三、比例

  1、理解比例的意義和基本性質(zhì),會解比例。

  2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

  3、認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。

  4、了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。

  5、認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

  6、滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育

  四、統(tǒng)計

  1、會綜合應(yīng)用學(xué)過的統(tǒng)計知識,能從統(tǒng)計圖中準確提取統(tǒng)計信息,能夠正確解釋統(tǒng)計結(jié)果。

  2、能根據(jù)統(tǒng)計圖提供的信息,做出正確的判斷或簡單預(yù)測。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 6

  數(shù)的讀法和寫法

  1.整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

  2.整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。

  3.小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。

  4.小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。

  5.分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的'讀法來讀。

  6.分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。

  7.百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。

  8.百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。

  數(shù)的改寫

  一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。

  1.準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000

  改寫成以萬做單位的數(shù)是125430萬;改寫成以億做單位的數(shù)12.543億。

  2.近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是13億。

  3.四舍五入法:要省略的尾數(shù)的位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略

  345900萬后面的尾數(shù)約是35萬。省略4725097420億后面的尾數(shù)約是47億。

  4.大小比較

  (1).比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看位,位上的數(shù)大,那個數(shù)就大;位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。

  (2).比較小數(shù)的大。合瓤此鼈兊恼麛(shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大……

  (3).比較分數(shù)的大小:分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 7

  (1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。

  解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。

  算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。

  加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。

  數(shù)量關(guān)系式(部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。

  差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的`是標準數(shù)與各數(shù)相差之和的平均數(shù)。

  數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)數(shù)與各數(shù)之差的和÷總份數(shù)=數(shù)應(yīng)給數(shù)數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。

  例:一輛汽車以每小時100千米的速度從甲地開往乙地,又以每小時60千米的速度從乙地開往甲地。求這輛車的平均速度。

  分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為100,所用的時間為1÷100,汽車從乙地到甲地速度為60千米,所用的時間是1÷60,汽車共行的時間為1÷100 +1÷60,汽車的平均速度為2 ÷(1÷100 +1÷60) =75 (千米)

  (2)歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。

  根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

  根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

  一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一。”

  兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一!

  正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。

  反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。

  解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標準,根據(jù)題目的要求算出結(jié)果。

  數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)

  總數(shù)量÷單一量=份數(shù)(反歸一)

  例一個織布工人,在七月份織布4774米,照這樣計算,織布6930米,需要多少天?

  分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

  (3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。

  特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。

  數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 8

  第一單元圓

  1、圓的定義:平面上的一種曲線圖形。

  2、將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等、

  3、半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。

  4、圓心確定圓的位置,半徑確定圓的大小。

  5、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。

  6、在同一個圓內(nèi),所有的半徑都相等,所有的直徑都相等。

  7、在同一個圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。

  8、在同一個圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。

  用字母表示為:

  d=2r

  r =1/2d

  用文字表示為:

  半徑=直徑÷2

  直徑=半徑×2

  9、圓的周長:圍成圓的曲線的長度叫做圓的周長。

  10、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數(shù)。我們把圓的周長和直徑的比值叫做圓周率,用字母表示。圓周率是一個無限不循環(huán)小數(shù)。在計算時,取π≈。世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。

  11、圓的周長公式:C=πd或C=2πr

  圓周長=π×直徑

  圓周長=π×半徑×2

  12、圓的面積:圓所占面積的大小叫圓的面積。

  13、把一個圓割成一個近似的長方形,割拼成的長方形的長相當(dāng)于圓周長的一半,用字母(πr)表示,寬相當(dāng)于圓的半徑,用字母(r)表示,因為長方形的面積=長×寬,所以圓的面積= πr×r。

  圓的面積公式:S=πr2。

  14、圓的面積公式:S=πr2或者S=π(d/2)2或者S=π(C÷(2π))2≈

  15、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。

  16、在一個長方形里畫一個最大的圓,圓的直徑等于長方形的寬。

  17、一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r,它的面積是

  S=πR2—πr2

  或S=π(R2—r2)。

  (其中R=r+環(huán)的寬度、)

  19、半圓的周長等于圓的周長的一半加直徑。半圓的周長與圓周長的一半的區(qū)別在于,半圓有直徑,而圓周長的一半沒有直徑。

  半圓的周長公式:

  C=πd/2+d

  或C=πr+2r

  圓周長的一半=πr

  20、半圓面積=圓的面積÷2

  公式為:S=πr2/2

  21、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。而面積擴大或縮小以上倍數(shù)的平方倍。

  例如:在同一個圓里,半徑擴大4倍,那么直徑和周長就都擴大4倍,而面積擴大16倍。

  22、兩個圓的半徑比等于直徑比等于周長比,而面積比等于以上比的平方。

  例如:兩個圓的半徑比是2:3,那么這兩個圓的直徑比和周長比都是2:3,而面積比是4:9。

  圓周長和直徑的比是π:1,比值是π

  圓周長和半徑的比是2π:1,比值是2π

  23、當(dāng)一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;

  當(dāng)一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

  24、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾、

  25、當(dāng)長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小

  26、扇形弧長公式:扇形的面積公式:

  S=nπr2/360

 。╪為扇形的圓心角度數(shù),r為扇形所在圓的半徑)

  27、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。

  28、有一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。

  有2條對稱軸的圖形是:長方形

  有3條對稱軸的圖形是:等邊三角形

  有4條對稱軸的圖形是:正方形

  有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。

  29、直徑所在的直線是圓的對稱軸。

  31、永遠記住要帶單位,周長是(例如:cm),面積是平方(例如:cm2),體積是立方(例如:cm3)。

  32、圓的周長:

  ×1= ×2=

  ×3= ×4=

  ×5= ×6=

  ×7= ×8=

  ×9= ×10=

  33、圓的面積:

  ×12= ×22=

  ×32= ×42=

  ×52= ×62=

  ×72= ×82=

  ×92= ×102=314

  第二單元分數(shù)混合運算

  1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序完全相同,都是先算乘除,再算加減,有括號的先算括號里的。

 、偃绻峭患夁\算,按照從左到右的順序依次計算。

 、谌绻欠謹(shù)連乘,可先進行約分,再進行計算;

  ③如果是分數(shù)乘除混合運算時,要先把除法轉(zhuǎn)換成乘法,然后按乘法運算。

  2、解決問題

 。1)用分數(shù)運算解決“求比已知量多(或少)幾分之幾的量是多少”的`實際問題,方法是:

  第①種方法:可以先求出多或少的具體量,再用單位“1”的量加或減去多或少的部分,求出要求的問題。

  第②種方法:也可以用單位“1”加或減去多或少的幾分之幾,求出未知數(shù)占單位“1”的幾分之幾,再用單位“1”的量乘這個分數(shù)。

 。2)“已知甲與乙的和,其中甲占和的幾分之幾,求乙數(shù)是多少?”

  第①種方法:首先明確誰占單位“1”的幾分之幾,求出甲數(shù),再用單位“1”減去甲數(shù),求出乙數(shù)。

  第②種方法:先用單位“1”減去已知甲數(shù)所占和的幾分之幾,即得未知乙數(shù)所占和的幾分之幾,再求出乙數(shù)。

 。3)用方程解決稍復(fù)雜的分數(shù)應(yīng)用題的步驟:

  ①要找準單位“1”。

  ②確定好其他量和單位“1”的量有什么關(guān)系,畫出關(guān)系圖,寫出等量關(guān)系式。

 、墼O(shè)未知量為X,根據(jù)等量關(guān)系式,列出方程。

 、芙獯鸱匠獭

 。4)要記住以下幾種算術(shù)解法解應(yīng)用題:

 、賹(yīng)數(shù)量÷對應(yīng)分率=單位“1”的量

  ②求一個數(shù)的幾分之幾是多少,用乘法計算。

 、垡阎粋數(shù)的幾分之幾是多少,求這個數(shù),用除法計算,還可以用列方程解答。

  3、要記住以下的解方程定律:

  加數(shù)+加數(shù)=和;

  加數(shù)=和–另一個加數(shù)。

  被減數(shù)–減數(shù)=差;

  被減數(shù)=差+減數(shù);

  減數(shù)=被減數(shù)–差。

  因數(shù)×因數(shù)=積;

  因數(shù)=積÷另一個因數(shù)。

  被除數(shù)÷除數(shù)=商;

  被除數(shù)=商×除數(shù);

  除數(shù)=被除數(shù)÷商。

  4、繪制簡單線段圖的方法:

  分數(shù)應(yīng)用題,分兩種類型,一種是知道單位“1”的量用乘法,另一種是求單位“1”的量,用除法。這兩種類型應(yīng)用題的數(shù)量關(guān)系可以分成三種:(一)一種量是另一種量的幾分之幾。(二)一種量比另一種量多幾分之幾。(三)一種量比另一種量少幾分之幾。繪制時關(guān)鍵處理好量與量之間的關(guān)系,在審題確定單位“1”的量。繪制步驟:

 、偈紫扔镁段表示出這個單位“1”的量,畫在最上面,用直尺畫。

 、诜致实姆帜甘菐拙桶褑挝弧1”的量平均分成幾份,用直尺畫出平均的等分。標出相關(guān)的量。

  ③再繪制與單位“1”有關(guān)的量,根據(jù)實際是上面的三種關(guān)系中的哪一種再畫。標出相關(guān)的量。

  ④問題所求要標出“?”號和單位。

  5、補充知識點

  分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。

  分數(shù)乘法的計算法則

  分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零、。

  分數(shù)乘法意義

  分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。

  分數(shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸

  倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。

  分數(shù)的倒數(shù)

  找一個分數(shù)的倒數(shù),例如3/4把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3、3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。

  整數(shù)的倒數(shù)

  找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。

  小數(shù)的倒數(shù)

  普通算法:找一個小數(shù)的倒數(shù),例如,把化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1

  用1計算法:也可以用1去除以這個數(shù),例如,1/等于4,所以的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。

  分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。

  分數(shù)除法計算法則:

  甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。

  分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。

  分數(shù)除法應(yīng)用題:先找單位1。單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。

  第三單元觀察物體

  1、觀察物體一般從正面、上面、左面或右面來觀察。

  2、同樣高度的物體,在同一光源的照射下,離光源越近,這個物體的影子就越短;離光源越遠,這個物體的影子就越長。

  3、站得高,才能望得遠。

  4、確定觀察的范圍:

  1)先找到觀察點、障礙點;

  2)連接觀察點和障礙點后確定觀察的范圍。

  5、看不到的地方稱作盲區(qū)。

  第四單元百分數(shù)的認識

  1、百分數(shù)的意義

  像84%,28%,……這樣的數(shù)叫作百分數(shù),表示一個數(shù)是另一個數(shù)的百分之幾。百分數(shù)也叫百分比、百分率。百分數(shù)只表示兩個數(shù)之間的關(guān)系,不能帶單位名稱,它表示的是一個比值。

  2、百分數(shù)的讀法和寫法

  ①百分數(shù)的讀法:百分數(shù)的讀法與分數(shù)的讀法相同,但百分數(shù)讀作“百分之幾”,不讀作“一百分之幾”。

 、诎俜謹(shù)的寫法:百分數(shù)相當(dāng)于分母是100的分數(shù),但百分數(shù)不能寫成分數(shù)的形式,而是在分子的后面加上百分號(%)來表示。

  3、百分數(shù)和分數(shù)的區(qū)別

 、僖饬x不同

  百分數(shù)只表示一個數(shù)是另一個數(shù)的百分之幾。它只能表示兩個數(shù)之間的倍數(shù)關(guān)系,并不是表示某一個具體數(shù)量,所以百分數(shù)不能帶單位。分數(shù)不僅可以表示兩個數(shù)之間的倍數(shù)關(guān)系,還可以表示一定的數(shù)量,所以分數(shù)表示數(shù)量時可以帶單位。

  ②寫法不同

  百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。

  分數(shù)的最后結(jié)果中的分子只能是整數(shù),計算結(jié)果不是最簡分數(shù)的要化成最簡分數(shù)。

  百分數(shù)的最后結(jié)果中的分子可以是整數(shù),也可以是小數(shù)。如:18%,180%

  4、小數(shù)、分數(shù)、百分數(shù)的互化

 、侔研(shù)化成百分數(shù)的方法:

  先把小數(shù)點向右移動兩位,再在數(shù)的后面直接添上“%”,如

 、诎逊謹(shù)化成百分數(shù)的方法:

  可以先把分數(shù)化成分母是100的分數(shù),再改寫成百分數(shù),如3/5=(除不盡的保留三位小數(shù))。

  ③把百分數(shù)化成小數(shù)的方法:

  先把“%”去掉,同時把小數(shù)點向左移動兩位,當(dāng)移動的位數(shù)不夠時,要添0補位。

  ④把百分數(shù)化成分數(shù)的方法:

  先把百分數(shù)改寫成分母是100的分數(shù),能約分的要約分成最簡分數(shù)。當(dāng)百分數(shù)的分子是小數(shù)時,要要根據(jù)分數(shù)的基本性質(zhì)把分子和分母同時擴大相同的倍數(shù),把分子變成整數(shù)后能約分的再約分。

  5、求一個數(shù)是另一個數(shù)的百分之幾的方法

  求一個數(shù)是另一個數(shù)的百分之幾的方法與求一個數(shù)是另一個數(shù)的幾分之幾的方法相同,就是用這個數(shù)除以另一個數(shù),除不盡時通常保留三位小數(shù),然后把小數(shù)點向右移動兩位,再在數(shù)的后面加上%

  6、求百分率的方法:

  百分率一般是指部分占總體的百分之幾。如合格率就是合格的產(chǎn)品數(shù)量占產(chǎn)品數(shù)量的百分之幾。及格率就是及格人數(shù)占總?cè)藬?shù)的百分之幾。結(jié)果用百分數(shù)的形式表示。

  ?嫉膸追N百分率:

  合格的數(shù)量÷總數(shù)量×100%=合格率

  及格的人數(shù)÷總?cè)藬?shù)×100%=及格率

  發(fā)芽的數(shù)量÷總數(shù)量×100%=發(fā)芽率

  優(yōu)秀的人數(shù)÷總?cè)藬?shù)×100%=優(yōu)秀率

  出席的人數(shù)÷總?cè)藬?shù)×100%=出席率

  缺席的人數(shù)÷總?cè)藬?shù)×100%=缺席率

  命中的次數(shù)÷總次數(shù)×100%=命中率

  7、求一個數(shù)的百分之幾是多少的實際問題的解法

  與求一個數(shù)的幾分之幾是多少的問題的解答方法相同,都是用乘法來計算,用這個數(shù)乘百分之幾。計算時可以把這個數(shù)化成小數(shù)來計算,也可以把這個數(shù)化成分數(shù)來計算,要根據(jù)具體情況分析,選擇簡便的計算方法。

  第五單元數(shù)據(jù)處理

  三種統(tǒng)計圖:

  條形統(tǒng)計圖(表示各個量的多少)

  折線統(tǒng)計圖(表示數(shù)量多少、反映增減變化)

  扇形統(tǒng)計圖(表示部分與整體的關(guān)系)。

  一、繪制條形統(tǒng)計圖(主要是用于比較數(shù)量大小)

  1、寫出統(tǒng)計圖的標題,在上方的右側(cè)表明制圖日期。

  2、確定橫軸、縱軸。

  3、在橫軸上適當(dāng)分配條形的位置,確定條形的寬度和間隔。(直條的寬窄要一致,間隔也要一致,單位長度要統(tǒng)一)

  4、縱軸上確定單位長度。確定單位長度所代表的量要根據(jù)最大和最小的來綜合考慮。

  5、根據(jù)數(shù)據(jù)的大小畫出長短不同的直條。

  6、給直條圖形不同的顏色(或底紋),并在統(tǒng)計圖右上角注明圖例。

  二、關(guān)于復(fù)試條形統(tǒng)計圖

  1、制作復(fù)試條形統(tǒng)計圖與單式條形統(tǒng)計圖的制作方法相同。只是在每組數(shù)據(jù)中各量要用顏色或底紋區(qū)分。

  2、復(fù)試條形統(tǒng)計圖———直條的寬窄要一致,間隔要一致,單位長度要統(tǒng)一。

  3、運用橫向、縱向、綜合、對比等不同方法觀察,可以讀懂復(fù)試條形統(tǒng)計圖,從中獲取盡可能多的信息。

  4、復(fù)試條形統(tǒng)計圖有縱向和橫向兩種畫法。

  三、繪制復(fù)試折線統(tǒng)計圖(不僅可以比較大小,還可以比較數(shù)量變化的快慢)

  a、只有一條折線的折線統(tǒng)計圖叫做單式折線統(tǒng)計圖。

  b、用不同的折線表示不同的數(shù)量變化情況的折線統(tǒng)計圖叫做復(fù)試折線統(tǒng)計圖。

  考點:三種單式統(tǒng)計圖和兩種復(fù)式統(tǒng)計圖。

  1、三種統(tǒng)計圖:條形統(tǒng)計圖表示數(shù)量的多少、折線統(tǒng)計圖表示數(shù)量多少、反映增減變化、扇形統(tǒng)計圖表示部分與整體的關(guān)系。

  2、復(fù)式條形統(tǒng)計圖:用兩種不同的條形來分別表示不同的類型。復(fù)式折線統(tǒng)計圖:用兩條不同的線來表示,一條用實線,另一條用虛線。

  3、反映某城市一天氣溫變化,最好用折線統(tǒng)計圖,反映某校六年級各班的人數(shù),用(條形)統(tǒng)計圖比較好,反映笑笑家食品支出占全部支出的多少,最好用扇形統(tǒng)計圖。

  第六單元比的認識

 。ㄒ唬┍鹊幕靖拍

  1、兩個數(shù)相除又叫做兩個數(shù)的比。比的前項除以后項所得的商,叫做比值。

  2、比值通常用分數(shù)、小數(shù)和整數(shù)表示。

  3、比的后項不能為0。

  4、同除法比較,比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商;

  5、根據(jù)分數(shù)與除法的關(guān)系,比的前項相當(dāng)于分子,比的后項相當(dāng)于分母,比值相當(dāng)于分數(shù)的值。

  6、比的基本性質(zhì):比的前項和后項同時乘上或者同時除以相同的數(shù)(0除外),比值不變。

 。ǘ┣蟊戎

  1、求比值:用比的前項除以比的后項

  (三)化簡比

  1、化簡比:用比的前項除以比的后項求出分數(shù)的比值后,在把分數(shù)比值改成比。

 。ㄋ模┍鹊膽(yīng)用

  1、比的第一種應(yīng)用:已知兩個或幾個數(shù)量的和,這兩個或幾個數(shù)量的比,求這兩個或這幾個數(shù)量是多少?

  例如:六年級有60人,男女生的人數(shù)比是5:7,男女生各有多少人?

  題目解析:60人就是男女生人數(shù)的和。

  解題思路:第一步求每份:60÷(5+7)=5人

  第二步求男女生:男生:5×5=25人女生:5×7=35人。

  2、比的第二種應(yīng)用:已知一個數(shù)量是多少,兩個或幾個數(shù)的比,求另外幾個數(shù)量是多少?

  例如:六年級有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

  題目解析:“男生25人”就是其中的一個數(shù)量。

  解題思路:第一步求每份:25÷5=5人

  第二步求女生:女生:5×7=35人。全班:25+35=60人

  3、比的第三種應(yīng)用:已知兩個數(shù)量的差,兩個或幾個數(shù)的比,求這兩個或這幾個數(shù)量是多少?

  例如:六年級的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

  4、要求量=已知量×要求量份數(shù)/已知量份數(shù)

  5、比在幾何里的運用:

 。1)已知長方形的周長,長和寬的比是a:b。求長和寬、面積。

  長=周長÷2×a/(a+b)

  寬=周長÷2×b/(a+b)

  面積=長×寬

 。2)已知已知長方體的棱長和,長、寬、高的比是a:b:c。求長、寬、高、體積

  長=周長÷4×a/(a+b+c)

  寬=周長÷4×b/(a+b+c)

  高=周長÷4×c/(a+b+c)

  體積=長×寬×高

 。3)已知三角形三個角的比是a:b:c,求三個內(nèi)角的度數(shù)。

  三個角分別為:

  180×a/(a+b+c)

  180×b/(a+b+c)

  180×c/(a+b+c)

 。4)已知三角形的周長,三條邊的長度比是a:b:c,求三條邊的長度。

  三條邊分別為:

  周長×a/(a+b+c)

  周長×b/(a+b+c)

  周長×c/(a+b+c)

  第七單元百分數(shù)的應(yīng)用

  百分數(shù)的基本概念

  1、百分數(shù)的定義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。

  百分數(shù)表示兩個數(shù)之間的比率關(guān)系,不表示具體的數(shù)量,所以百分數(shù)不能帶單位。

  2、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。

  例如:25%的意義:表示一個數(shù)是另一個數(shù)的25%。

  3、百分數(shù)通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。分子部分可為小數(shù)、整數(shù),可以大于100,小于100或等于100。

  4、小數(shù)與百分數(shù)互化的規(guī)則:

  把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號;

  把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。

  5、百分數(shù)與分數(shù)互化的規(guī)則:

  把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡的保留三位小數(shù)),再把小數(shù)化成百分數(shù);

  把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 9

  一、課內(nèi)重視聽講,課后及時復(fù)習(xí)

  課堂上特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。

  首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

  二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣

  1、要想學(xué)好數(shù)學(xué),多做題目是必須的,熟悉掌握各種題型的解題思路。

  2、剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準,反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的`解題規(guī)律。

  3、對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

  4、在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。

  有些同學(xué)平時做作業(yè)都會做,可一到考試就犯不是算錯數(shù),就是看錯題等等低級錯誤。這是因為平時解題時隨便、粗心、大意等,所以小朋友平時要養(yǎng)成良好的解題習(xí)慣是非常重要的!

  三、調(diào)整心態(tài),正確對待考試

  1、首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。

  2、調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

  3、考試前要做好準備,練練常規(guī)題,把自己的思路展開,在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要使自己的水平正常甚至超常發(fā)揮。

  由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進入數(shù)學(xué)的廣闊天地中去。

  小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié) 10

  1、約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。

  2、通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。

  3、小數(shù)的意義:把整數(shù)1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、千分之幾……可以用小數(shù)表示。一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……

  4、一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。

  5、純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如:0.25 、 0.368都是純小數(shù)。帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。例如:3.25 、5.26都是帶小數(shù)。

  6、有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如:41.7 、 25.3 、 0.23都是有限小數(shù)。

  7、無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如:4.33 …… 3.1415926 ……

  8、無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例如:π。

  9、循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。

  10、0既不是正數(shù),也不是負數(shù),它是正數(shù)和負數(shù)的分界。0大于負數(shù),小于正數(shù)。負數(shù)比較大小時,不考慮負號,數(shù)字大的數(shù)反而小。

  11、“+”可以省略不寫,“—”不能省略。

  12、數(shù)軸的要素:正方向(箭頭表示)、原點(0刻度)、單位長度(刻度)。數(shù)軸上0左邊的數(shù)都是負數(shù),0右邊的數(shù)都是正數(shù)。從左到右逐漸變大,最大負整數(shù)—1最小正整數(shù)1。

  13、表示兩個比相等的式子叫做比例。如:2:1=6:3。

  14、在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6。

  15、解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的'另外一個未知項。求比例中的未知項,叫做解比例。例如:3:x = 4:,內(nèi)項乘內(nèi)項,外項乘外項,則:4x =3×8,解得x=6。

  16、成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)例如:速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。

  17、成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。用字母表示x×y=k(一定)例如:路程一定,速度和時間成反比例,因為:速度×?xí)r間=路程(一定)。

  18、比例尺=圖上距離:實際距離;實際距離=圖上距離÷比例尺;圖上距離=實際距離×比例尺。

【小學(xué)六年級上冊數(shù)學(xué)必考知識點總結(jié)】相關(guān)文章:

高考數(shù)學(xué)必考知識點總結(jié)06-28

小學(xué)升學(xué)考試必考知識點數(shù)學(xué)10-22

必考知識點總結(jié)07-04

物理必考知識點總結(jié)01-09

中考物理必考知識點總結(jié)07-02

高中必考數(shù)學(xué)知識點歸納整理09-27

小學(xué)生必考古詩知識點總結(jié)11-24

小學(xué)六年級上冊數(shù)學(xué)知識點總結(jié)08-04

高考生物必考知識點總結(jié)04-11

久久免费视频关看,两性色福利午夜视频免费,久久久免费Av电影,久久依然免费视频了
在线白嫩萝福利莉视频动漫 | 亚洲看片在线看 | 亚洲中文字幕久久电影 | 欧美日韩日本在线观看A | 精品国产日韩亚洲一区 | 久久久久久久国产AV嫩草 |